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GENERAL VARIATIONAL METHODS FOR
WAVES IN ELASTIC COMPOSITES?

by

S. Nemat-Nasser?®

ABSTRACT

General variational theorems in which the displacement, the
stress, and the strain in one case, and the displacement and the stress in
another case, are given independent variations, and which include appro-

priate general boundary and discontinuity conditions, are developed with

\a view toward the application to harmonic waves in elastic composites with

periodic structures. The one-dimensional case is first developed in detail,
nd in order to demonstrate the effectiveness of the results, especially

their accuracy in providing the dispersion curve, waves propagating normal

to layers in a layered composite are discussed, and numerical results are

presented; see Tables I and II. Then the general three-dimensional case

is congidered, and the results are applied to waves propagating normal to

the fibers in < fiber-reinforced composite.
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I. INTRODUCTION

Because of their dispersive and other desirable effects, composite

materials have become now an important ingredient in many aerospace
structures. The propagation of elastic waves in such materials has, there-
fore, been discussed by a number of writers using different theories. In

{1, 2], for example, a two-term Taylor expansion of the displacement field
within each layer in a layered composite is considered together with a
certain smoothing process, to arrive at an approximate set of equations
which resemble those for a homogeneous continuum with microstructure.
Bedfoid and Stern (3], on the other hand, directly consider a mixture

theory to characterize the composite, and proceed to calculate the coupling
coefficients in the corresponding constitutive relations, by considering
simple static elasticity problems; these authors confine their analysis to a
special case where the interacting body forces are assumed to be propor-
tional to the relative displacement of the constituents. In a more recent
paper, Hegemier and Navfeh [4] have used an asymptotic appsoach and, for
waves propagating normal to the layers in a layered composite, have derived
systernatically mixture-type field equations directly, which, for the har-
monic wave, gives the exact dispersion relation, and which can be used

(as these authors de) to study the transient waves in such composites.

For harmonic waves in a composite with a periodic structure, one

.

may employ a variational approach. This can particularly become a very

effective tool, if one uses a variational statement in which not only the
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displacement, but also the stress field is given independent variation.
Moreover, by permitting discontinuity in the displacement and the stress
test functions, one can expect a more accurate reproduction of the local
variation in the displacement and the stress fields within and across the
constituent materials. An example of such a calculation can be found in a
thesis by Wheeler [5] and in a recent article by Kohn, et al. [6], where
the classical theorem of stationary potential energy which leads to the
well-known Rayleigh quotient for the eigenfrequency, is used. Although
the authors in [6] incorporate jump conditions in their variational state.
ment by the addition of certain terms to the classical functional, they do
not use this modified form and hence it is not shown how effective it is.
Moreover, since the additional terms inentioned above are arrived at by
trial and error, their physical significance is not immediately obvious.

In this paper we shall develop general variational statements for
harmonic waves in composites, in which the displacement, the stress, and
the strain in on~ case, and the displacement and the stress in anot .er. are
given arbitrary variation. In addition we shall develop all the discon'inuity
and the quasi-periodicity conditions in a straightforward and systematic
manner. Of course, we shall base our developments on variational theorems
which have Leen explored by a number of investigators in the mechanics
literature, beginning with the werk of Hellinger (1914) [ 7], the unpublished
thesis by Prange (1916) [ 8], coitributions by Reissner (1950-53) [9, 10],
works by Hu (1954) [11], Washizu (1955) [12], and a large number of

other researchers; see the textboock by Washizu [13] for further
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discussion; see also [14]). In particular, regarding the jump conditions
we shall generalize the work by Frager (1967) [15] to include the variation

of weighted iveraged tractions and displacements on a discontinuity

woundary. Fror composites such a modification proves quite useful, since
the elastic constants of the two constituents may differ substantially from
each other. Finally, to demonstrate the effect.veness of our results we
discuss in some detail, elastic wavea propagating normal to the layers in
a layered composite. Our numerical results are then compared with those
reported in [1, 5, 6] and the exact soluticn, which comparison reveals the
superiority of the variational statements developed herein; see Tables I
and II. In fact, accurate results as those presented here, have not been
obtained before by any of the methods mentioned above: except, cf course,
[4] where the exact dispersion relation is obtained. In addition, a2 second
example is worked out, which illustrates the zignificance of the proposed
variational statement that includes a weighted averaged traction on interior
discontinuity surfaces. Here, with a suitable choice :f the weighting

parameter, accurate results are obtained; see¢ Table III
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2. ONE-DIMENSIONAL CASE

In order to stress the essentials we begin by considering an
elastic medium whose properties vary periodically in the direction of the
propagation of elastic waves, i.e., the x-direction. Let a be the
periodicity-length. Then we have p(x + a) = p'x), and N (x + a) = n(x),
where p is the mass-density, and 7 stands for A + 2 when
dilatational waves are considered, and for p when shear waves are
congidered, A and y being the Lame coefficients.

For harmonic waves with frequency w, all the field quantities are
tiwt

proportional to e , where i = V-1 and t measures time, and

therefore we have

do 2 du
—_ ¢ = = = —
) PW" u 0 , (o ne , € ’ (2.1)

where ¢ is the stress, u the displacement, and ¢ the strain.
For a periodic medium Eq. (2.1) has periodic coefficients, and
according to the well-known Floquet theory, see for example [16], it

admits a solution with the property
glx+ta) = gx)e'?® | (2.2)

where g stands for any of the dependent variables 0, € or u, and q

is the overall wave number.
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We wish to establish general variational statements which cau be
employed together with some appropriate test functions which may »>r may

not be coutinuous throughout a representative cell, in order to obtain

approximate solutions to system (2.1). Since our objective is to apply
these variational statements to composite materials whose properties vary
substantially from one constituent to the next, we may wish to use different
test functions to represent, for example, the displacement in the region
occupied by each constituent material. Therefore, within a cell, the test
displacement function may suffer a finite discontinuity across the interface
between the two materials. Similar remarks apply to the stress field.
Hence a general variational method must account for such possible discon-
tinuities.

Let us choose the origin of the coordinate such that - i2‘ S x s %
defines a complete cell. In this region let x = X be a point of discontin-
uity for a test function. If the materizl to th: left is completely disconnected
from the material to the right of the discontinuity point, then, since we are
dealing with a one-dimensional problem, we may prescribe arbitrarily one
boundary condition at x = xo' and one boundary condition at x = x, o+ 2
total of no more than two conditions; x * = lim (xo t o), > 0. Hence,

o—0
in general, one may prescribe arbitrarily jumps in the value of two field
quntities at x = X in the three-dimensional case this number increases

to six.

In addition to the jump conditions we must . -ount for the

™
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quasi-periodicity condition (2. 2) which can be written as

) e19? 2) = o(- el (2.3)

ol

Y} = u(-

u (

ol

o

vl

As we shall see below, these conditions can be accounted for by either
the use of a Lagrangian multiplier, or by simply calculating the work of

the tractions at the two boundary points of the cell.

General Variational Statement [7-15]

The most general variational statement for real-valued field
quantities with discontinuities, in which the stress, the strain, and the

displacement fields are varied independently, may be stated as follows.

B2 / du
Iz‘}_a/g I_—Z-ne -pfu-c\e--(—l-x-)]dx
- tTu, or A (u - U)}.Z//ZZ - {E (u)}xxx , (2. 4)

o]

where f is the bady force, T is the prescribed value of traction at the
end points, A is the Lagrangian multiplier, and U is the prescribed

value of the displacement at the end points; 3t each end-point we can

either prescribe the displacement or the stress. bul nct both. Additionally

in (2. 1) we have used the notaction

o = ao(a)+ (1 - a)o‘” , {u) = u@)- u(l) (2.5)

+ )y -
where at poinc x , g(a)= g (x,), and g(uz g(x,), g standing for either

0 or u; in(2.5), a is an arbitrary real ccnstant, a weighting parameter.

6
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whose gignificance will be discussed below.1 Taking the first variation of

(2. 4) we obtain

o1+ [ {[ne-o]oc-[e- 2o [Eoo]on}e
+ {[0‘- T:Ibu , or [0 - A]Gu - [u-UJﬁA}-:/;
+ {(a) 5u - (u) 66} , (2. 6)
“*e
where
3 os (1-a)u®™ gu't) . (2. 7)

From (2. 6) we observe that the vanishing of the right-hand side for
arbitrary variation of strain, stress, and displacement in the region

- -3 S x S -;, yields respectively, Hooke's law, the definition of strain,
and the momentum equation. From the second term on the right-hand side
of (2. 6), moreover, we obtain the stress boundary data or the displacement
boundary data, depending on whether the traction or the displacement is
prescribed at a boundary point; in the latter case the Lagrangian multiplier
A is the traction corresponding to the prescribed displacement. The last
term in the right-hand side of (2. 6) corresponds to the jump conditions at
the discontinuity point x = X, At this point one can prescribe arbitrarily
the variation of no more than two field quantities. To arrive at a more

general case we have implemented the weighting parameter o whose value

can be selected arbitrarily, Observe that, for arbitrary variation

1
When two materials, RP » B = 1,2, meet at point x_, the superscript is iden-
tified with the corresponding material; f{.e., o 1is assigned to one of the
constituents. 2

- 7
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of* @, the last term in (2. 6) guarantees the continuity of the

displacement field across the interface x = X, whereas, for arbitrar:

variation of u the stress is required to be continuous. For «a = -li , the
last term in (2. 6) becomes

_;_(5“@) b @y @@y % (5624 5 (@4, | g
Similarly, fer « = 0 and a = 1 we obtain, respectively,

(0) 6u®. Cu)sg®), (o) 6u®) . (u)6o0® . (2.9)

These equations indicate the fact that at a discontinuity point different
quantities can be assigned arbitrarily. Theoretically, these equations are

equivalent. In actual calculation, however, a proper choice for the value of

o may lead to m.ore accurzte results; we shall exemplify this later on.

Application to Composites

Consider now a composite consisting of layered elastic media
bonded together, and let us consider harmonic waves propagating normal
to the layers. For simplicity assume that a cell in this composite consists

of two materials, Mp , B =1,2, where M occupies the region

-—= £ x S _—g and lz) £ x S -3, and M? occupies the region

vio i

$ x S -123; see Fig. 1. The mass density and the elastic constantsof these

! Note that ¢ is a linear combination of a(z) and a(l)as defined by (2. 5).

However, it.is O that has independent variation, a~J not ¢/ and
o) separately.
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materials will be denoted by pp and 1)5 , P =1, 2, respectively,
where each constituent may be inhomogeneous in the direction of wave
propagation.

To specialize the furctional (2. 4) to this case, we observe that
this functional must remain real-valued, although :.. the present case the

field quantities are complex-valued. Identifying the body force f with

e 1
- wa u, "ve write

2
a/2 *
_ {_1. x* 1 3 ok Cex . duiy }
I1 Ja/z SNee - S Pwiuu -o\e dx) c.c. b dx

- {A[u* (_az,) - u*i-%) e_iqa]} - {E (u*)} + c.c. ,
x=+b/2
(2.10)

where the superscript star denotes the compiex conjugate, and the term
c.c. stands for the complex conjugate of the quantities which precede it.
The second term in the right-hand side of (2. 10) corresponds to
the constraint on the displacement at the end points imposed by the quasi-
periodirity ¢ ndition (2. 3)l ; A is a Lagrangian multiplier.? Instead of
using the displacement counstraint, we may replace this term by a term
which corresponds to the work of the end tractions. The results, however,

will be the same, since twice this work is given by

Here we use the obvious fact that a complex- valued quantity plus its'
complex conjugate is equal to twice of its real part.

2 In the actual calculation, A must be set equal to © (—;).,

9
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, (2.11)

where (2. 3)z is used. The comparison of the right-hand side of (2. 11)
with the second term in the right-hand side of (2.10) reveals that A = 0’(%) .

Taking the first variation of I, we now obtain

a/2 N
L '[alz {[ne-o]bc -[e- J() tpw uiﬁu

+ c.c.}dx
:lbu izl _[ (_%)_ 19275, *(\%
- [u* (—;) - u*(-%)eianbA* + c.c.}

{(o) bu® - (u)bo* + c.;c.;} , (2.12)
x = £b/2

61

-+
I_—I
Nlm

+

which for arbitrariness of the indicated variations, gives all the field
equations and the corresponding boundary ana jump conditions.

The functional I, may now be specialized to yield other functionals
which may be more suitable for calculation in a given context. For
example, if we assume that Eqs. (2. 1)2, 5 are satisfied by the test

function for the displacement, I1 reduces to

10
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-{(nF) tc.c (2.13)

whose first variation is

o1 |
LR @) Al (3 [rd (-3)- A e (-3)

e (B) e (D) et e

a/2

. {-[-:l—i—x (n%}—‘:) + pwau]ﬁu*+ c.c.\}dx
a

_ T
t{(nE) sure <u)6\n-gd%->+cec-~} o (2.14)
x=+b/2
where
@) )
(nge) = om G+ (- a)n @19

where the superscript ref: rs to the corresponding material, i. e.,
M or M®.

Other special cases are obvious. For example, if the test function
is chosen such that the quasi-periodicity condition is automatically

satisfied, the second term in the right-hand side of (2.13) drops out. If,

moreover, the test function is continuous throughnut the cell, the last

11
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term in the right-hand side of (2. 13) vanishes. In this very special case
we then arrive at the usual Rayleigh quotient which defines the frequency.
This is the case which was exemplified in detail in [5, 6]. Observe that
the corresponding approximate expression for the stress field obtained in
this manner would suffer a discontinuity at the interface of the two constitu-
ent materials. The results are, therefore, very poor: see Table II. If,
on the other hand, different test functions are used to represent the displace-
ment field within the region occupied by each constituent material, the last
term in (2. 13) must be retained. This may then result in a more reasonable
approximate expression for both the displacement and the stress fields.
We therefore wish to stress here that, if one wishes to vary only the dis-
placement field, as is done in [5, 6], one then must use this latter approach,
rather than the usual Rayleigh quotient.

In most calculations it is much easier to use the same set of test
functions throughout the entire cell. To arrive at sufficiently accurate
results, another variational statement must be employed, in which B&t_}_l

the displacement and the stress fields can be directly and independently

approximated. In the following we shall discuss this case.

Another General Variational Statement [7-15]

Let us denote by D the inverase of the elasticity coefficient 1, i.e.,

D = (2.16)

2
n
The most general variational statement for real-valued field quantities

with discontinuities, in which the displacemenrt and the stress fields

12




(but not the strain field) are varied independently, may be stated as

follows; compare with Eq. (2.4):

/
J = ‘-[:/: {—léDaa_ pfu - c%x‘-l']dx-P{Tu, or A(u-U)}a-/:/z
+ {o (u)}x=x , (2.17)

(o]

where all the quantities are defined as before. The first variation of

(2.17) is

b - j_:’; {[po- 2700 + [22 + puru]ou) ox

] {[a ; T]Gu , or [o ; A]Gu [u ; U]GA}.a/:/z

- {0y 8u . (w) 6T} (2.18)
X=X

which yields, for arbitrary variation of the indicated quantities, all the
field equations, and the boundary and jumip conditions.

Observe that iy continuous displacement and stress test functions
are used in (2.17), the last term drops out. Nevertheless, the corres-
ponding variational statement will yield reasonable approximate expressions
for the displacemenrnt and the siress fields.

To apply (2.17) to elastic waves in composites, we proceed as

before, anil consider the func‘ivnal

13




J1=‘[ {%D00*+%Pw2uu*-o%f+cc}dx
-al2
+ {A[u*(%) - u*(--;-')e-iqa]} + {3 (u* }—ib/2+c c
(2-19)

whose fixat variation i

o3, < [ {[po- £]e0" s [£ 4 puta ot s e Y
{Le(3) - aJew(3) - [o(-3) - a7 Jou'(-3)
- [e () -0 (-3)e o™+ e }

- {(o) 6u’ - (u) 60 + c.c. } . (2. 20)
x=%+b/2

It is clear that the vanishing of 0 J1 for arbitrary variation of the indicated
quantities, guarantees the satisfaction of the field equations, the quasi-
periodicity conditions, and the continuity of the displacement and the stress
across the interface of two materials within the cell.

Let us now consider numerical examples before discussing the

general three-dimensional case.

Illustrative Examples

I. As our first exarnple let us illustrate the effectiveness of our

variational theorem corresponding to functional (2.19). We assume that

14
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each constituent in the composite is homogeneous and isotropic.

As our test functions let us consider

=
[

N . £+N .
_ Z Un e1(C2+ 2w n)¢ , o = Z S e1(Q+ 2rn)¢ . (2.21)
2=0 n=0 "

where Q = qa, £ = 3—;, and Un and Sn are the Fourier coefficients

which are to be calculated; (2. Zl)1 is the test function used in {5, 6.

TTIRL T P, W R ey vy
)

Since the above test functions are continuous throughout the cell,

i Rkt ek VM e Atma v i o aen

s and moreover satisfy the quasi-periodicity conditions, only the integral

in (2.19) survives. Substituting from (2. 21) into this integral and carrying

PR TV VS S

‘out the indicated integrations, we arrive at

+N sinw(n-m)l)'
I = ¥ [pr"u u* + ADS s*] a
1 n m n m
n, m=0
n#m

w(n - m)

+N .
- 2 * g %* 1 % &
) + +=(Q+ - l 2.
+ Z [Pw UnUn DSnSn a(Q ern)(SnUn Sn Un) , (2.22)

st SR Sk sl i an 4 s o e & s

where the following notation is employed:

3 3 1
) — ]
P =mn pl + na Pa , D =mn,D + n, D3 s (2. 23) :
| i
a-b b ]
n = , n = - !
1 a ] a

To begin with we immediately observe that, for N = 0, (2.22)

yields

15
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—= /2 _ n n
= D , D=—+ — |, 2.24
w, = Q/(pD) iy (2. 24)

which corresponds to the non-dispersive results that can be obtained by

the usual method of calculating the effective mass-density and elastic

modulus.

For N = ], we introduce the notation

T
g-= {U-N’ Uner s o Ugr oo UN} ’
(2. 25)
s = {s s s s }T
-~ -NI -N+1 s ey 0 y v ey N ’
where superposed T denotes the transpose, and write (2. 22) as
vy [ E] (U
J1 (N) = L , (2. 26)
s¥ H% & S
Lo d ~ ' ~ ~
where
B . _ b , b -
_ sinw = sin Zw-;
P bp w ap 2n
. b . b
sin 7= _ sin 7 —
Ap ———— ) Ap —
g -
. b . b !
sin Zw—a- sin Tr-; _
Bo—— B3 P
- .
. ir
H=diag = {Q-2tN, Q+2r(n+l), ..., Q ..., Q+ zm} . (2.27)
16
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and where the matrix @ is cbtained by replacing w? P in the matrix
9 by 5, and «®Ap by AD, respectively. From che stationary con-

dition imposed on (2. 26¢) we now immediate arrive at

QU+HS =0 , H'U+8Ss:=0 ,

~

which yield

s--#'ay . [E-eHigu-o . (228

~

The second equation in (2. 28) provides the eigenfrequencies and the
corresponding eigenvectors, and the first equation then gives the Fourier

coefficients for the stress field. The characteristic equation therefore is
* -1
det [g -%H Q] =0 . (2. 29)

For a given value of the wave number Q, the roots of this equation give
the corresponding frequencies.

Table I gives typical results with the corresponding exact values for
P

_pg = 3, and the indicated values of 2, In this table the
1

1

v
®
ol

values of the dimensionless frequency,
v =aw(emY, 7=nmn + (2.30)

are listed for the indicated values of Q and N, and for various eigen-
modes. As is seen from this table, our crudest approximation which
still manifests dispersion and which corresponds tc N =1, (i.e., 3 plane

waves), gives for the first mode, results which are extremely accurate.

17
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For higher modes N must be taken greater than 1, although even for

N = 1, the secoiv and third modes obtained from (2. 29) are still quite
accurate; we shall discuss this below. As is seen from Table I, for

N 2 2, again extremely accurate results are obtainea. Indeed, to our
knowledge, no other approximate method has as yet produced such superior
results with so little computational effort.

To demonstrate this last assertion, we have compared some of
our results with those corresponding to the methods reported in {1] and
in [5, 6], in Table 1Ia. Observe that, even for N = 5, (i.e., 11 plane
waves), the method of Kohn, et al. [6] gives poorer results than those
deduced from Eq. (2.29) for N =1, (i.e., only 3 plane waves), while for
a fixed N, Eq. (2.29) requires less computational effort than the corres-
ponding equation in [6]; this is b:cause, in Eq. (2.29) matrix H is
diagonal, w.iereas in [6] the characteristic equation has the form
det | A - Ve §| = 0, in which neither A nor B is diagonal.

In Table IIb the values of the frequency parameter v for higher
modes, as given by Eq. (2.29), are cornpared with those obtained in [6].

We note that for N = 2, for example, the characteristic Eq. (2. 29)
isa 5 x5 determinant which can yield only the first five eigen-
frequencies. As a rule, only the first eigenfrequency ig reasonably
accurate. A very remaskable feature of the present method, howr.ver, is
that, even the higher frequencies obtained in this manner, are quite
accurate, whereas this is not the case .or the method proposed by Kohn,

et al. [6]. Table Ilc illustrates this fact. In tais *able all eigenfrequencies

18




are reported for N = 2,

II. For our second example we shall illustrate the variational state-
ment (2. 13) and especially the significance of the weighting parameter «.
Again we consider waves propagating normal to the layers in a layered
medium. Here we shall use a different displacement field in each con-

stituent, and set

x
+N i(Q + 2mn)=
u(1)=2Ue a’ -ESxS--'e,
n 2 2
n=0
b a
d - < s =
an > x > ,
x
=N iz2evm=—
u? - V e L. - (2.31)
m 2 2
m=0

(3)

; Whil- u(” satisfies the quasi-periodicity condition, u does not, and
therefore (2.31) represents a crude approximation. Nevertheless, if the
weighting parameter a is chosen appropriately, reasonable results can
be obtained. We shall not report the detailed algebra here, and only give

the final equation:

. b
N ] v o4, . sin 7 (m-n)7
11~ 2- [--.y?(Q+21rm)(Q+2nn)+-.-6—+-71r (m - n) — Um Un
n,m=0
n#m

+N V3 r 2 via 6
+ Y s[‘:-{— (Q+ 2mn)®n_ - _nl:‘u*u + [—‘z"'ﬁy - —_— ]v*v }
n:ol Y b 6 n n n Yy ) n n

: =
+ 2 21:\1 4| 29 4 (1 g)(Q+ 2vm)| sin|w(n-m D02 || uF v +u_v*
’ n a 2a mn mmnj’

nlm:() Y 2
(2.32)
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where‘)':nz/ﬂl.9=Pa/91,;=n1+71_,and-§=n1+9na

Table Illa gives the frequency parameter v for 6 =3, n =n = —;—
N =5, and indicated values of Q and a. As is seen, @ can have a
significant effect on the accuracy of the result. It should be remarked
that, in view of the discontinuity conditions which are involved now, the
algebra is more cumbersome than in the previous example. Another point
that should be stressed is that o = -% is not necessarily a good choice for

1
this parameter, as is seen from Table III; for « = 5 our general

variational statement (2. 13) reduces to the case considered in [6]. The
optimum value of @ occurs at & = 2, and it appears that this optimum

a is independent of the value of y = na /r)1 , for fixed values of n,

and 6, and for N = 5. Purther calculation revealed that for sufficiently
large N, say, N 2 3, the optimum value of o is always 2, independently of
the values of the other parameters. For small N, say, N £ 2, on the other
hand, optimum o chzages with the other parameters. This is exemplified in
Fig. 2, vhere th» variation of v is plotted against o for indicated values
of the other parsmeters. Note that for N = 0, the optimum value of o is 1.0,
vhereas for N = 2, the optiruum value 18 2.1. It is rcmarkable that even for
N=0 (i.e,, u(I) - eriqg and u(’) =Y 1.0 gives v = 0.280 as com-
pared with the exact value v = 0.271, For N= 2 and @ = 2.1, on the other

hand, v = 0.274,
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3. THREE-DIMENSIONAL CASE

We shall first develop the relevant general variational statements
and then specialize the results for application tc harmonic waves in
composites with periodic structure. As before, we shall be exclusively
concerned with the linear elasticity theory.

Using a rectangular Cartesian coordinate system we denote the dis-
ik and Ujk ,

respectively, and assume that the body forces fj measured per unit mass

placement, the strain, and the stress components by uj , €

are given throughout the volume V occupied by an elastic body with mass-

density p and elasticity coefficients CjkLm

vector of a typical point in V; j, k, £, m=1,2,3. In the general anisotropic

(x), where x is the position

case CjkLm is symmetric with respect to the exchange of j and k,

4L and m, and jk and 4m. For the isotropic case, moreover, we have

C Ab, 6, + 2p 6jL ka, where A and . are the Lame coeffic-

jktm = “Pjk “tm
ients (they may depend on x), and 6jk is the Kronecker delta; we need
not confine our discussion to the special isotropic case.

The field equations are:

Tk T PE 20 %%k * Ciktm 4m

(3.1)

“k T %K) ' YGok)

i

(“i,k + “k,j) )

where a comma followed by an index letter indicates differentiai.ion with

respect to the corresponding coordinate variable, and reneated subscripts




.

[P U,

4

are to be summed from 1 te 3.

Tu characterize tke houndary '~ta wc Jdenole by n_ the exterior
unit 1ormal on the regular surface o> whicli bounds the body, and assume
that at a typical point on S certain components of the displacement vector,
together with the complementary components of the tractio.» vector, are

prescribed. We denote by Ti the prescribed traction components,

i

and by U, the préscribed displacement comprnents;

=
henceforth, singly and doubly underlined subsc=ipt letters refer, respec-
tively to the prescribed tractic and displacement components at a point

on S. We thus have

o..n =T . u, = U, , on S . (3. 2)

In our general variationa’ statements we shall admit test functions
which may have finite discontinuities across a finite nvmber of isolated

surfaces within the volume V. We ghall denote the collection of these dis-

continuity surfaces by ¥, and obterve that, at a point on ¥, three boundary

data can be prescribed fur the material on one side of the surface, and
three boundary data for the material on the ~lher side, a total of no more
than six conditions. Hence, a jump in the value of at most six quantities
may be prescribed arbitrarily at a point on &.

With the above preliminaries ou! of the way we now consider a
variational statement in which the displacement, tk: strain, and the stress

can be given arbit rary variation, as foilows. Consgider the functional
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- ({3 I
K = § 2 Ciktm S S4m ™ P57 Tl Sk l"(j.k)]} W

’ Is Tiuids ) J‘s T-.i.-[uj_- ) Ui-]ds ) IE Tj (uj) dz ,(3 3)

where

T, = aT.(z)- (1 - a)Tg") . (u,) = u(.z)- u.(l), on L . (3.4)
J J J J J J

Here the auperscripts are defined in the following manner: The discontin-

uity surface ¥ divides the body into subregions with at least a part of

L as a common surface. Consider two such adjacent subregions, say, ;

regions ' and 2, and the field quantity g. At a typical pointon I, the
®

i quantity g©, P = 1, 2, then denotes the limiting value of g as the con-

an e

sidered point is approached from the interior of subregionl B.

In Eq. (3.4;1 , O = “(35) is a real-valued function defined on %; this
function can be chosen arbitrarily to expedite the numericul calculation in

the given context. [For composites, o is assigned to one of the constituents.]
If we now observe that the exterior unit normal to, say, subregionl,

is the negative of the exterior unit normal to subregion 2 at a typical point

an e e et SR nme s TR

on ¥, the first variation of (3.3) becomes

T 0K = J‘V{l_cjk{,m “tm " °jk] O¢,y - [‘jk - Y, k)]oojk

-|0. + f.]bu.}dv
l: ik, k P J J

; +Is[oiknk-l’i]6uid5-Jrl:ui- UL]GTldS

1 For composites, 8 refers to the corresponding material, "6
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+ ‘[z{ (1) b'ﬁj - (uy) bﬁj}dz , (3. 5)
where

'Jj =1 - a)uj“’+ auj“) on T . (3. 6)

We observe that for arbitrary variation of strain, stress, and displace-
ment in V, we obtain Hooks's law, the definition of strain, and the
momentum equations, respectively. On the boundary S, moreover,
arbitrary variation of u, and T  gives, respectively, the prescribed
traction and displacement bounda;y data. The last term in (3. 5) corres-
ponds tc *he jump conditions on the discontinuity surface T. It indicates
that, if weighted averaged displacement and tractionsg defined by Eqs. (3. 6)
and (3. 4)l , respectively, are given arbitrary variation, then the continuity
of the traccion and displacement components is guaranteed. Note that,
similarly ‘0 the one-dimensional case, special forms of these weighted
averaged quantities can be obtained by the suitable choice for the arbitrary
function «.

Before proceeding to apply the variational statement (3.3) to
harmonic waves in composites, let us state another general variational
theorem in which only the stress and displacement are given arbitrary
variation. To this end congider the functional

3
L = '[v {%Djkun % Oam * P - Oy Ui} 4V + B.C. 4 J.C.(3 ,7)

where B.C. and [T.C. denote, respectively, the boundary and the jump
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conditions as given by the last two terms (with minus sigi: changed to plus)

in the right-hand side of (3.3), and D,

jkim is the elastic compliance

matrix obtained by inverting the matrix Cjk tm The first variation of

L is
6L = [ r[D o 6c_ +] o + pf. 16 dav
= JV‘L jktm Ttm " u(j,k)] jk [jk,k P j] “5}
+ B.C. + J.C. , (3. 8)

where, again, B.C. and J.C. correspond to the negative of the last

three terms in (3. 5).

Application to Compusites

For the sake of simplicity in presentation, let us consider a
composite consisting of a densely packed and completely bounded collection
of unit cells in the form of parallelpipeds; our results, however, apply to
composites with different periodic structures, without any additional
difficulties. Consider a representative cell, and let its three edges be
defined by three vectors ﬁp, B=1,2,3. We shall assume that the cell
with volume V and surface S consists of different material constituents
which are separated from each other by the interior surfaces L. We
obgerve that, because of the periodic structure, we have g (35 + ’{:B) = g(zs),
where g stands for any of the material properties.

We shall consider harmonic waves of fre juency w and wave
vector qJ_ propagating in this composite. Because of the periodic struc-

ture of the medium, the field equations have periodic coefficients, and
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therefore, according to the Floquet theory, they admit solutions of the

form

f(f + 3‘3) = £(x) exp{iqjl,?} , (3.9)

where f stands for any of the field quantities. In particular, for x on
the gsurface S, Eq. (3.9) defines the quasi-periodicity conditions for the
displacement or t':z tiactions, depending on which quantity is identified
with f. For the sake of simplicity in presentation let us denote three
faces of the parallelpiped which intersect at a common point, by S’, and
designate a typical point on S’ by & - Then it is clear that, to each
point £ on S’ there corresponds, for a suitable iﬂ , apoint £ + ﬁﬁ

on S - S'. The quasi-periodicity condition then becomes

uj<§+£p)=uj(§) exp{iqkl,li3 ,
(3.10)

Tj(£+£p>= -Tj(ﬁ) exp{iqk{,f} , £ on s’ ,

where the minus sign in the right-hand side of the last equation occurs,
since the exterior unit normals on S at £ and } + A{:ﬁ , are oppositely
oriented

As in the one-dimensional case, we shall employ the first equation
in (3.10) as constraints on the displacement field.

To arrive at a variational statement in which the displacement,
the strain, and the stress are varied independently, we now identify the

body forces by -;- w? uj , and from (3.3) obtain
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= 1 * 10,2 ¥ * *
K = Iv{zcjkLm €k Sm- 2P Y Y - ojk[cjk- u(j'k)]if c.c.} dv

J‘s, {Aj[uj*(g_ +£p) - ui*(g) exp[-iqkl,lf}] + c.c. }dS

J'z {’fj(uj*) + c.c. }dz , (3.11)

where all the terms are as defined before. Now, taking the first

variation of K:. we obtain
°K1=.[v {[ijm €am - °jk] 6‘;(‘ [‘jk - “(j,k)]b"j’;
. [ojk,k+ pwauj]buj*+ c.c.;}dV
+ IS, {[Tj(£+ ip) ] AJ.]buj* (g+ ﬁﬁ)
+ [Tj(ﬁ) + A exp{-iquf}]auj*(g)
- [uj(g + ’&B) - uj(é) exp{iqk Llf}]OAj* + c.c.}dS'
+ _[E{<Tj)6'ﬁj*- <uj>6?j*+ c.c.}dz : (3.12)

As is seen, the vanishing of the first integral in the right-hand side of
(3.12) for arbitrary variation of the indicated field quantities, yields all
the field equations. The vanishing of the second integral shows that the
Lagrangian multiplier Aj is given by

] By - -
Aj= T (£+45) = -T(§) exp liq ¢f)
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Thus the second term in the right-hand side of (3. 11) is twice the potential
of the surface tractions which are constrained to satisfy the quasi-period-
icity condition (3. 10) 2" Finally, the vanishing of the last integral in the
right-hand side of (3. 12), for arbitrary variation of the weighted averaged
displacement and tractions, as defined on £ by Eqgs. (3. 4)1 and (3. 6),
guarantees the continuity of the tractions and the displacements on the
discontinuity surface.

Functional (3.11) can now be gpecialized in the same manner as
discussed in connection with the one-dimensional case. For instance, if
we wish to vary only the displacement field, we assume that the last four
expressions in (3.1) are satisfied, and modify accordingly the integrand
of the first integral in the right-hand side of (3.11).

In a similar manner we can immediately write down the functional
]..1 from the functional L, which yields, for harmonic waves in com-
posites with periodic structure, the appropriate variational theorem in
which the displacement and the stress fields are given independent

variation. In this manner we obtain
L:j{lD v 0*+—1Pw2uu*-0 u* +cc}dV
1y L2 Tjkdm Tjk Tdm o 2 i3 ik (k) o
+ QC. + J.C. , (3.13)

where Q.C. and J.C. stand for the quasi-periodic and the jump con-
ditions, respectively, which are the negatives of those occurring in the

expression for Kl. As can be immediately verified, the vanishing of the
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firgt variation of the Ll, for arbitrary variation of the appropriate
quantities, gives all the field equations, the quasi-periodicity conditions,
and the jump conditions.

Application to Fiber-Reinforced Composites

As our final illustrative example, we consider harmonic waves
propagating normal to the fibers in a fibex-reinforced elastic composite
whose fibers are approximately rectangular in cross section, and are

placed parallel to each other in a perindic manner. The cross section of

a representative cell is shown in Fig. 3. We consider waves propagating
in the x -direction.

The general variztional theorenis, Eqs. (3.4) and (3. 7), may be
applied directly here. As an illustration we shall apply (3. 7) which

permits variations in the stress and displacement fields. The other case

can be handled in a similar manner.

With the geometry defined in Fig. 3 we therefore write

l a /2 a2
. L = rD * 3 ¥ - ' * - *
. ; I"ﬂ . J aa,zi pyon ey Ton T P " U %s ~ %oy Y(p.y) Oy (6, mifax, ax,
a /2

0 o, G D[ ) - W (s )]

-al/Z

< e i




-b /2
+ c c.} dx,
., b _ , b ., b
: Ib GRS SPPRIS SN SR PER SN
+ec}tdx (3. 14)

‘3,)’,6,71=1,2 ’

where D[Syﬁn is the elastic compliance matrix for the plane strain case,

- L8 .S
Bybn Zu[ o 6711 2(A+p) 66766?1 '

which for isotropic materials becomes D

where bﬂ’y is the two-dimensional Kronecker delta.
The second integral in functional (3. 14) corresponds to the
periodicity conditions
a a

up(xl, —f')=up<x1,-7a) ., B=12 , (3. 15)

whereas the third integral pertains to the quasi-peridocity conditions

a a

“ﬁ('z_l”‘a)=“p<'—zl"”‘a)"iqa1 5 (3.16)
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in these integrals the Lagrangian multipliers A 3 are identified with the
corresponding ‘ r2:tions. The last two integrals, moreover, correspond tu
jump conditions, if different test functions are nced in each region for the
displacement and stress fields. As we have pointed out before, the
inclusicn of these jumps, although it may improve on the detailed local
variation of the field quantities, results in a more complic-ted numerical
procedure. For this reason it may be desirable to use continuous test
functions for the displacement and the stress components, in which case the

last two integrals drop out. Simple test-functions of this kind are

N .
uﬁ (x1 ) xa) = 2 Up‘;!m) exp {i [(Q + 2wn) gl + Zwmgz:‘} ,

n, m=0
(3.17)
+N
- (nm) : > \ ]
aﬁ')’(xl ' xa) ) n, m=0 SB‘)’ exp{1[(Q+ 2ma) ¢, + Zmmg, } ’
where

X, x3

Q=aqa . &= . &7

1 2

Observe that test-functions (3. 17) satisfy the continuity conditions, the
periodicity and the quasi- periodicity requirements defined, respectively,

by (3.15) and (3.16). These functions, however, do not permit for the dis-

b
. . 1
continuity of the stress-compnonents o on the interfaces at x = t—z- , and
b a2 1
. 2 . . . .
o on the interfaces at x = i—z- . Since no exact solution exists for this
11 2

problem, it is not possible to easily assess the accuracy of the results. For
this reason we postpone further discussions until an assessment of their

accuracy is made by means of a murc refined procedure.
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TABLE 1

Frequency Parameter v = aw(;/-ﬁ)”/ # for Indicated Vaiues
n P

of Q =gqa, N, and —3, a.ndfor-lz = -l, and -2 = 3.
n, a 2 P,

|

FIRST MODE !
] Q n,/n, = 4 m,/n, = 50
N =1 EXACT N =1 EXACT
0.5 0.3987 0.3987 0.1379 0.1379
, 1.0 0. 7893 0. 7892 0. 2710 0. 2709
2.0 1. 4925 1.4930 0. 4969 0. 4974
k‘ 3.0 1. 8744 1. 8865 0. 6039 0. 6094
‘S
2
|
- SECOND MODE
B} = -
B o n,/m = m,/n = 50
g E N =2 EXACT N = 2 EXLACT
E‘ 13
b 0.0 5. 786 5. 795 1.954 1.958
5 3
Lo 1.0 5. 194 5. 205 1.902 1.907
- 2.0 4. 506 4.516 1.791 1.797
’ 3.0 4.122 4.125 1.722 1,725
; FIFTH MODE
. n,m = n,/n = 50
N =5 EXACT N = 5 EXACT
0.0 12. 51 12. 53 6. 45 6.49
1.0 12.98 13. 00 6. 54 6.58
2.0 13. 66 13.68 6. 76 6. 78
f 3.0 14.05 14.10 7. 00 7. 03
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Freguency Parameter vV = aw (p/ _1-))"/2 as given by Eq.

TABLE Ila

(2. 29), by Kohn,

Krumhansl, and Lee [6], and by Sun, Achenbach, and Herrmann 1],

.-

P aakia

P

for Indicated Values of Q = qa and N, and for b = -% . =2 . 3, and

n a Py

£ = }00.

1
FIRST MODE
Present Method Kohn, Krumhansl, {Sun, Achenbach
Eq. (2.29) and Lee, Ref. [6] {and Herrmann
N=1 N=1 N=5
0.5 0. 098 0. 098 0.237 0.107 0.099
1.0 0.193 0.193 0. 460 0.210 0.196
2.0 0.354 0.354 0. 854 0.383 0.381
3.0 0. 434 0.430 1.083 0.467 0. 546
4.0 0.388 0.380 1. 034 0.421 0. 687
5.0 0. 244 0. 238 0. 694 0.267 0. 805
6.0 0. 056 0. 055 0.168 0.062 0.901
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TABLE IIb

Frequency Parameter v = aw(_P-/B)lla for Higher Modes, as

given by Eq. (2. 29), and by Kohn, Krumhansl, and Lee [6],

for Indicated Values of Q = qa and N, and for 2 -1

1

2 ?
P3 n,
-~ = 3, and — = 100.
P n:.
SECOND MODE, N = 2 THIRD MODE, N =3
a Present | Kohn, Krum- Present | Kohn, Krum-
EXACT| Method hansl, and EXACT | Method hansl, and
Eq.(2.29)| Lee, Ref.[6 | Eq.(2.29) | Lee, Ref. [6]
1.0 1.36 1.36 3.79 2.50 2.50 5.47
3.0 1.24 1. 24 3.35 2.57 2. 56 6.08
5.0 1.34 1.35 3.41 2.51 2.49 6.22
FOURTH MODE, N =4 FIFTH MODE, N =5
Present | Kohn, Krum- Present | Kohn, Krum-
Q EXACT | Method hansl, and EXACT | Method hansl, and
Eq.(2.29){ Lee, Ref.[6] E(L(Z:ZQ) Lee, Ref. [6]
1.0 3.77 3.76 6.76 4.94 4.94 6.69
3.0 3.70 3.69 6.37 5.02 5. 00 7.02
5.0 3.76 3.75 6. 28 4.96 4.91 7.13
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TABLE Ilc

Frequency Parameter v = a(...;(;/;)12 for First Five Modes

given by Eq. (2. 29), and by [6] for N=2, l; = lz, 2—3- = 3,
and 22- = $0, '
1
Present Method Kohn, Krumhansl, and
q | EXACT Eq. (2.29) Lee. Ref. [6]
0.27 0.27 0.31
b9l 1.90 3.95
1.0 3.48 3.46 6.27
' 5,26 5.87 12.11
| 6.58 7.12 13.90
0.50 0.50 0.57
1.80 1.79 3.68
2.0 ! 3.56 3.58 6.63
L 5.16 5.47 11.13
E 6.78 7.73 14.48
|
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TABLE III

Frequency Parameter v = 2w (p/M)Y? for Indicated Values of

P

Q=gqa, a, nalnl,andforgz ;j-=3,andN=
FIRST MODE

n,/m =4 n,/m, = 50
EXACT | 4789 | 1.493 1.886 | 0.271 | 0.497 0. 609
Q 1.0 2.0 3.0 1.0 2.0 3.0

o
-10.0 0.877 | 1.586 1.919 0.274 | 0.503 0.618
- 5.0 0.879 | 1.590 1.923 0.274 | 0.504 0.619
0.0 0.929 | 1.650 1.983 0.292 | 0.530 0. 639
0.5 0.936 | 1.719 2. 101 0. 279 5. 532 0. 677
1.0 1.811 | 3.622 5.422 0. 561 1.121 i, 682
2.0 0.868 | 1.568 1.895 | © 273 | 0.499 0. 610
10. 0 0.873 | 1.579 1.911 0. 274 0. 502 0. 615
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L v=20.271 (EXACT)

N=

2

EQ.(2.32)

Figure 2

Frequency parameter v = MG/T-\)& as function of the

b 1 92
weighting parameter o; "2 -~ =3,

1
and Q = 1.0 .
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